Plano de Argand-Gauss
A figura acima representa o tão conhecido plano cartesiano que tudo indica ter sido uma contribuição de René Descartes. Descartes foi capaz de fundir a álgebra e a geometria criando fórmulas e números com os quais era possível alternar entre as duas. O gráfico acima representa um plano bidimensional onde cada ponto pode ser descrito por dois números, ou um par ordenado, um que dá a posição horizontal e o segundo que dá a posição vertical. Na figura o ponto P(a,b) é representado pelos números reais a (indicando a posição horizontal no eixo das abscissas) e b (indicando a posição vertical no eixo das ordenadas).
Veja no gráfico abaixo como é incrível poder entender o que Descartes propôs.
No gráfico perceba o ponto P(a,b) movendo-se e descrevendo uma trajetória com formato circular. A medida que o ponto vai se movendo ao longo do círculo, as suas coordenadas mudam. Além disso é possível criar uma equação que identifica os valores variáveis destes números em qualquer ponto da figura.
No caso dos números complexos a ideia foi associar ao número complexo z = a + bi o ponto P(a,b) do plano cartesiano xOy, onde, por convenção marcamos a parte real de z no eixo horizontal e a parte imaginária de z no eixo vertical.
O ponto P(a,b) é chamado de afixo ou imagem geométrica de z.