Base de um espaço vetorial
Em Álgebra Linear, o conceito de base é fundamental para compreender a estrutura de espaços vetoriais. Uma base é um conjunto de vetores que, de certa forma, “gera” todos os outros vetores no espaço. Seja V um espaço vetorial e B um subconjunto de V. O conjunto B é considerado uma base se três condições forem satisfeitas:
1 – O vetores de B são linearmente independentes.
2 – Os vetores de B geram o espaço vetorial V, ou seja, qualquer vetor de V pode ser expresso como combinação linear de B.
3 – Possuir um conjunto mínimo gerador.
Portanto, seja V um espaço vetorial e B um subconjunto de V linearmente independente e que gera V. B é considerado Base de V se qualquer elemento v de V puder se escrito como combinação linear dos elementos de B, ou seja, B = {v1, v2, v3, …, vn} e v ∈ V, logo v = α1v1 + α2v2 + α3v3 + … + αnvn sendo os escalares α1, α2, α3, …, αn as coordenadas de v na base B.
Exemplos de bases:
{(1,0),(0,1)} base de R2. Essa base é de dimensão 2, pois possui 2 vetores.
{(1,0,0),(0,1,0),(0,0,1)} base de R3. Essa base é de dimensão 3, pois possui 3 vetores.
{1, x, x², x³, …, xn} base dos polinômios de grau n
|
, |
|
, |
|
, |
|
Base das matrizes M2×2.